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ABS"TRACT / ?) :)0 é

An analysis is performed of the effect of flutter on data recorded
using instrumentation tape recorders. Flutter is assumed to consist of
a Gaussian perturbation in recorder speed and to have a flat power spec-
tral density over the frequencies of interest.

Additionally, a system is proposed for smoothing bit-rate variations
in digital data due to flutter. The sfstem consists of a buffer with
the output rate controlled by the bﬁffer queue length. Such a system

would be used in the on-board storage for delayed transmission of data

from a space vehicle.
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CHAPTER I

INTRODUCTION

Ideally, a magnetic tape passes across the heads of a recorder at
a constant lineal Qelocity. However, in practice; mechanical imperfections
of the recorder and tape cause tape velocity variations,; hence a depar-
ture from the ideal. Some of the major sources of tape speed variations
associated with the recorder are eccentricities of the tape reels, cap-
stan, and pinch rollers and imperfections of the tape-tensioning mechanism.
Associated with the tape itself is the granular texture of oxide coatings,
which contributes most of the higher frequency variations.1

In this report, tape speed variations are referred to as flutter,

which can be expressed mathematically as

v(t)-V
g(t) = Y-V (1-1)
\'
where g(t) = instantaneous flutter,
v(t) = instantaneous tape velocity, and
V = mean tape velocity.

Flutter is shown in this equation to be the deviation of instantaneous
tape velocity from the mean tape velocity expressed as a fraction of the
mean velocity. Also, g(t) is seen to have a zero mean.

Mechanical imperfections of the recorder and tape, as described above,

contribute to g(t). The eccentricities of circular recorder

1 .
Superscripts refer to numbered references.
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mechanisms give rise to essentially sinusoidal components of g(t) due to
the "once-around" angular frequencies. Since there are generally many
such frequency components having more or less random phase relationships,
the power spectral density will be relatively constant, and the central
limit theorem implies that the amplitude density function of g(t) will be
approximately zero-mean Gaussian. The many sinusoidal components are
generally found below 100 cycles/sec., since they are generated by the
eccentricities of relatively large circular mechanisms having relatively
low angular velocities.

The frequency components of g(t) above 100 cycles/sec. are generated
primarily by the frictional impulses which occur as the granular surface
of the tape slides across the recorder heads and tape-guiding surfaces.
The spectral density of these components is also relatively constant,
and the amplitude density function is zero-mean Gaussian. The magnitude
of the flutter spectral density above 100 cycles/sec. is generally much
less than below 100 cycles/sec. when no tape speed-control servo is
used. However for the purposes of this report a uniform flutter spectral
density yields satisfactory results since the spectral density is approxi-
mated for the frequency range of greatest interest.

Based upon these considerations the model for flutter used in this
report is a signal having a zero-mean Gaussian amplitude density function3
and a constant power spectral density.

The purpose of this report is generally to lay a foundation for the
theoretical treatment of flutter in instrumentation recorders and specifi-
cally to propose a system for smoothing bit rate variations in recorded
digital data. These goals are accomplished as follows. First, the
theoretical foundation for treatment of random flutter is established in

Chapter II. The effect of such flutter on the spectrum of a recorded



sinusoid and on the bit rate of a digital signal is investigated, and
means of experimentally obtaining flutter data is presented.

In Chapter III a system to be used in conjunction with a digital
recorder for '"'smoothing" bit-rate variations is proposed. Additionally,
a means is developed for specifying the parameters for the proposed
system from experimental flutter data.

The possibility of using a phase lock loop for controlling the
bit-rate-smoothing system is investigated in Chapter IV. It is shown

that the phase-locked loop system is unsuitable.



CHAPTER 11

TAPE RECORDER FLUTTER ANALYSIS

In this chapter a theoretical treatment of flutter is developed
from the standpoint of tape speed variations during the record and
playback operations. Consideration is given to the effect of flutter
on both direct recorded data signals and signals recorded using fre-
quency modulation (FM) techniques. It is found that both recording
techniques introduce a time base error (TBE) on the recorded data signal
which is the integral of the flutter, g(t), as defined in Eq. 1-1,

After developing expressions for the recorder output voltage in
terms of flutter and the recorded signal, the particular case of a
sinusoid flutter component is investigated when the recorded signal
is a sinusoid. The results give insight into the effect of flutter on
recorded signals.

Since in practice flutter is not sinusoidal but is rather random
in nature, a theoretical model for random flutter and TBE is next
developed. The theoretical model is then used to treat the effect of
random flutter on a recorded sinusoid and recorded digital data.

Finally, a means of experimentally measuring and presenting flutter

and TBE data is given along with typical plots of such data.

2.1 THEORETICAL DEVELOPMENT

There are in general two techniques used to record scientific data
on tapes:u (1) direct recording and (2) frequency modulation (FM) record-
ing. In the former technique the data signal is amplified and applied
directly to the head coils. 1In the latter technique the data signal

first frequency modulates a carrier having a frequency much greater
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than the data bandwidth, and then the modulated carrier is recorded.
Upon playback the signal is frequency demodulated in a FM aiscriminator
and the discriminator output is a replica of the data signal, although
perturbed by recorder flutter. Consideration is now given to the effect
of flutter on the data signal when either of these recording techniques
is used. The development is algebraically tedious but straightforward

and gives valudble insight into flutter effects.

2.1.1 Direct Recording
The lineal velocity under the heads of a recorder typically has a
small variation about the mean tape velocity. Accordingly, let the

instantaneous record tape velocity, vl(t), be given by

vy = v, [t + @2ue), (2.1-1)

where V1 = mean record tape velocity,
(a/2)u(t) = instantaneous record flutter, and
a = peak-to-peak record flutter.
<

Further, lu(td)] =1, and

p(t) =0,

1"t "

where denotes the mean value. The distance along the tape,

s(tl), where t. is any instant during the record operation, is given by

1

!

V1 () dx

s(tl)

[o]

!

v, [t we d%] . (2.1-2)
o]

Since the integral in the second line of Eq. 2.1-2 is seen to be a

perturbation of the time base due to record flutter, it is convenient to write

R RN
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t
o
where hl(tl) = time base error (TBE) due to record
flutter.
Eq. 2.1-2 then becomes
s(t) =V, [tl . hl(tl)] . (2.1-8)

Record time as a function of distance along the tape and record TBE is

found from Eq. 2.1-4 to be

R -
HeES

. - hl(tl) (2.1-5)

in which s 1s assumed to be a function of time, t Since TBE is

1°

typically on the order of a millisecond, t. can be approximated by

1
t1 = s/V1 in the argument of TBE with little error. Eq. 2.1-5 then
becomes

t1 = s/V1 - h1 (s/Vl), (2.1-6)

where t1 is expressed in terms of distance along the tape.

Now assume that the signal to be recorded is given by ei(t),
where the subscript '"i" denotes recorder "input' signal. The flux
established on the tape during the record operation is proportional

5
to the instantaneous signal voltage, 1i.e.,

CoCt)) = ke (t)), (2.1-7)



where ¢(t1) flux in webers, and

kf recorder gain in webers/volt.

Substituting Eq. 2.1-6 into Eq. 2.1-7 yields flux as a function of
distance along the tape,

*

b(s) B kfei {s/V1 - hl(s/Vl)}. (2.1-8)

Consideration must now be given to the determination of the recorder

output voltage upon playback. The recorder output voltage is simply pro-

portional to theltime derivative of the flux in the read head during play-

back., Since this flux is proportional to the flux on the tape as given

in Eq. 2,1-8, the output voltage, eo(t), may be expressed as

_ t _ E QE t 1
eo(t) = K dbd(s)/dt = V1 T [l—hl(s/Vl)] e; {s/Vl—hl(s/Vl)},(2.1—9)
where K = proportionality constant,
K =K kf,
e, (t) = dei(t)/dt, and
h1 (t) = dhl(t)/dt.

The instantaneous playback tape velocity, v2(t), is
vz(t) = ds/dt. (2.1-10)
In analogy to Eq. 2.1-1, vz(t) can be expressed as

v, () = V, [1 . (b/Z)P(t)] , (2.1-11)

*
Observe functional notation, i.e., e, is a function of

s/V1 - hl(s/Vl)
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where V2 = mean playback tape velocity,
(b/2)P(t) = instantaneous playback flutter, and
b = peak-to-peak playback flutter.
Again, lP(t)l§ 1, and
P(t) = 0.
From Eq. 2.1-3 note that
h1 (s/Vl) = (a/2) p (s/Vl). (2.1-12)

Substitution of Eqs. 2,1-10, 2,1-11, and 2.1-12 into.Eq. 2.1-9 yields

\'
2
e (t) =K = [@ " (b/z>p(tﬂ [1 i (a/2)u(s/V1)]
1
X ei{s/_V1 - hl(s/Vl)} . (2.1-13)

It only remains to express s in terms of t, where s is an implied

function of t in Eq. 2.1-13. Eqgs. 2.1-10 and 2.1-11 give s as

t

(/3]
it

vz(*)d&

o}
t

v, [t + (b/2) P(-’Odo(]- (2.1-14)

(o]

In a manner analogous to Eq. 2.1-3 for record flutter, we define a TBE,

h2(t), due to playback flutter as

t
hy (£ & b/2) P (<)a<. (2.1-15)

Using Eq. 2.1-15, Eq. 2.1-14 is written as

s =V, [t + h2(t)] . (2.1-16)
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Substitution of Eq. 2.1-16 into Eq. 2.1-13 yields
V. \'
e (t) = K 2 I:l + (b/2)9(t)] 1 - (a/2)p —-?-(t + h (t)) }
o 2
\'2 A"
1 1
v \'
' 2 2
X e, —[t + )] -0y [ (t+ny)] 4, (2.1-17)
\' v
1 1
which can be rewritten as
V2 V2
eo(t) =K —«<1+ (b/2)p(t) - (a/2)u [—- (t + hz(t)j] - (b/2)p(t)(a/2)
v v .
1 1

v A V. Yy

(V2 [V Vi [V |
xp[— (t . hz(t>)] e; 4= |t +nye) - =t |2 (t + h2<t>) . (2.1-18)
Now define an overall TBE, h(t), as

v v
A 1 2
h(t) & by (t) - —hl{— [t . hz(t)]} . (2.1-19)

V2 V1

and in analogy to Eqs. 2.1-3 and 2.1-15, an overall flutter, g(t), as
A 1 1 V2 1 V2 A
g(t) = dh(t)/dt = hy(t) - h ¢ — [t + hz(t)] - h { —= [t + hz(t)] h, (D,

1
V1 V1

or
t

h(t) = g(«)d«. (2.1-20)

The functions g(t) and h(t) account for both record and playback flutter.
Since TBE is shown to be the integral of flutter, the lower flutter fre-
quencies seriously affect TBE. Eqs. 2.1-3 and 2.1-15 may be used in Eq.

2.1-20 to yield
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V)
g(t) = (b/2)P(t)-(a/2) p [-— (t + h2(t)>]
v
1
P
-(b/2)p(t)(a/2)u [——- (t + h2(t))] . (2.1-21)
v
1

Substitution of Eqs. 2.1-19 and 2.1-21 into Eq. 2.1-18 yields the rela-
tively simple result
v

e (1) = K % [1 s g(t)] e'i _2 [t s h(t)] . (2.1-22)

1 Vl

Eq. 2.1-22 shbws that the overall effect of flutter is to introduce
an amplitude modulation (AM) term, 1 + g(t), on the output signal and
also to change the time base to the form t + h(t). Of course, in direct
recording the recorder differentiates the input signal as denoted by the
prime in Eq. 2.1-22, Note that no description of g(t) or h(t) has been
given to this point in the development, and the equations given apply
for any particular g(t) or h(t) desired. Section 2.2 treats the case
when g(t) is sinusoidal and Sections 2.3, 2.4, and 2.5 consider the

case when g(t) is a Gaussian random variable with a flat spectral density.

2.1.2 FM Recording

Consideration now is given to the second major technique for record-
ing scientific data, namely FM recording. In FM recording the data
signal is used to frequency modulate a carrier frequency prior to record-
ing. The frequency modulated carrier, ei(t), is then applied to the
record head and upon playback the output voltage, eo(t), is frequency
demodulated to retrieve the data signal. The results of Section 2.1.1

may be used to obtain the transformation from ei(t) to eo(t), but consider-
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ation must be given to the frequency modulation and demodulation steps.
Let the data signal to be recorded be given by em(t), which is

used to frequency modulate the carrier waveform. The signal to be

recorded, ei(t), is just an FM signal given by

t
Aw i
e.(t) = E sind{ w t + —= e (£)a« . (2.1-23)
i c c m
E
m /o
where Ec = carrier amplitude,
w, = carrier frequency,
ch = peak carrier frequency deviation, and
E_ = maximum value e (t).
m m

Assuming the record and playback mean tape velocities are equal (V1 = V2),

the recorder output voltage before frequency demodulation is given by

Eq. 2.1-22 as

eo(t) = KEcwc [} + g(t)] 1 + cos < W, [t + h(t)]

w E
c m
Aas t + h(t) 3
+ S e («)dx } . (2.1-24)
E m :
m (o]

This signal is next frequency demodulated in an FM discriminator that
clips the AM terms and yields an output voltage, ed(t), proportional
to the instantaneous frequency of the cosine term.since ed(t) is the

time derivative of the argument,

ch>em e h(e)]

E
(o m

ed(t) = decl 1 + g(tf 1+ (a)

AW e Ht + h(t)]
Y __‘E___._L — 5, (2.1-25)

w E
e m
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where Kd is the discriminator gain in volts/rad./sec.
When the discriminator is balaﬁced to yield zero volts output for
an input frequency of w, rad./sec., the dc term within the braces in
Eq. 2.1-25 is not present in the output. The peak value of g(t) is

typically on the order of .005 (corresponding to 1% peak-to-peak flutter),

hence the term involving g(t) is neglected. With these simplifications

em[t + h(t)]

E
m

Eq. 2.1-25 may be written as

(2.1-26)

ed(t) = K ch

d
Comparison of Eq. 2.1-22 with Eq. 2.1-26 shows that both direct and
FM recording introduce a TBE on the recorded data signal. 1In addition,
direct recording results in the differentiation of the input data signal
whereas FM recording does not. The important point is that TBE is the
most prominent flutter effect.
Now that general expressions have been derived which theoretically
describe the effects of flutter on general recorded signals, it is instruct-
ive to consider specific forms of flutter and recorded signals for gaining

insight into these effects. This is the subject of the next four sections.

2.2 EFFECT OF SINUSOIDAL FLUTTER ON A DIRECT RECORDED SINUSOID
As an example of the application of the theoretical development
given in Section 2.1, consideration is now given to the simple case of
a single sinusoidal flutter component perturbing a direct recorded sinusoidal

signal. Let the signal to be recorded be given by

e.(t) = E sin w t, (2.2-1)
1 8 S

and the flutter be given by
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g(t) = (a/2) cos mft . (2.2-2)
Since TBE is the integral of flutter,
t
A a .

h(t) = g{«)d« = —= sin wft . (2.2-3)

2w

o) f

Since the signal is direct recorded, Eq. 2.1-22 gives the recorder out-
put voltage as
v

A%
e (t) =K 2 w E [1 + 2 cos w t] cos 2 w (t + =2 sin o t) (2.2-4)
(e} s s , f s f

V1 2 V1 2wf

Since peak-to-peak flutter '"a" is small (on the order of .0l1) the AM
term may be neglected. Also, if the constants, which do not affect the
spectral distribution of eo(t), are neglected, and V1 and V, are assumed
equal, Eq. 2.2-4 becomes

aw

eo(t) = cOS (wst + —3 sin w_t). (2.2-5)

f
wa

From Eq. 2.2-5, eo(t) is seen to be a signal frequency modulated
aw

by the flutter-generated signal, —=2 sin mft. The modulation index, me,
2w
X £
is
aw
m, = — . (2.2-6)
2wf

Observe in Eq. 2.2-6 that m_ is dependent on both the amplitude of the

£

sinusoidal flutter and the ratio of signal frequency to flutter frequency.

For low-frequency flutter components m_ can be quite large.

f
Substituting Eq. 2.2-6 into Eq. 2.2-5 yields

e (t) = cos (wt + m_sin w,t). (2.2-7)
o s f f

. . . 6 ..
which can be expanded in terms of Bessel functions , giving
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eo(t) = Jo(mf)cos wst + Jl(mf)cos(ws + wf)t + Jz(mf)cos(ws + 2wf)t +

-Jl(mf)cos(ws - wf)t + Jz(mf)cos(wS - 2wf)t - e .., (2.2-8)

nes

where Jn(mf) nth order Bessel function of the first kind.

Eq. 2.2-8 indicates that there is an infinite number of sidebands generated
by flutter about the signal frequency, W and spaced at intervals of the

flutter frequency, w Actually, for m_<.6, only the first pair of side-

£ f

bands is significant. For higher values of m_ the bandwidth, W, occupied

f
by eo(t) is approximately
W= Bmfwf, (2.2-9)

where B is determined from Fig. 2.2-1. 1In Eq. 2.2-9 and Fig. 2.2-1
sidebands having a relative amplitude less than 0.01 are neglected.

The results of this section show the adverse effect of low frequency
flutter components, especially on the higher recorded frequencies. If
it is desired to recover most of the power in the recorded signal, Eq.
2.2-9 and Fig. 2.2-1 determine the bandwidth, W, centered on ms for

doing so. In general, the greater m the more the recorded spectrum

f’

is spread, and consequently, the greater W will be.

2.3 RANDOM FLUTTER AND TBE SPECTRA

It has been mentioned that since TBE is the integral of flutter,
low frequency components of flutter can seriously affect TBE. Reduc-~
tion of TBE is accomplished on several modern instrumentation recorders
by employing a fast-position servo speed control to practically eliminate

these low frequency flutter components in the band from O to w,, where

1

8
w5 the response of the servo, is usually on the order of 100 cycles/sec.

The overall wideband flutter is not reduced significantly by such a
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servo but the TBE is typically reduced from the order of a millisecond
to a microsecond.9 The remaining flutter is found to have essentially
a uniform spectrum from around 100 cycles/sec. to 10 kilocycles/sec.
G(w), the spectral density of g(t), can therefore be approximated by the
constant density shown in Fig. 2.3-1. The remaining flutter is also
quite random, and its probability density function is approximately
Gaussian. In the absence of servo speed control the spectrum will still
be considered flat over the frequency range of interest and the proba-
bility density function for flutter is assumed to be Gaussian as out-
lined in Chapter I.

From Eq. 2.1-20 and Fig. 2.3-1 it is seen that
6w

2
w

G
=2 (2.3-1)
2

H(w)

w

for w1<w <w2 where

H(w) = TBE spectral density, and
G(w) = flutter spectral density.
Let H(w) be defined by
2
H(w) = 0 H (w), (2.3-2)
h n
2
where Gh = mean-square TBE, and
Hn(w) = normalized TBE spectral density.

Hn(w) has the property that

Hn(m)dw = 1. (2.3-3)

From Eq. 2.3-1
(2.3-4)
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where C = a constant.
Substituting Eq. 2.3-4 into Eq. 2.3-3 determines the constant
W, w
c = 172
@7
Therefore from Eq. 2.3-4,
W, w
B = =2 L (2.3-5)
n W, -w w2
271
and finally from Eqs. 2.3-2 and 2.3-5,
W, W
2 7172 1
H(w) = o » —5 (2.3-6)
Wy W
H(w) is plotted in Fig. 2.3-2, and the seriousness of low frequency
flutter components on TBE is clearly demonstrated.
Substitution of Eq. 2.3-6 into Eq. 2.3-1 yields
W W
_ 21
Go * % —w ’
@™
or
G (w,-w,)
of e 0 2 1 (2.3-7)
“19,
. 2 . .
Fig. 2.3-1 shows that the mean-square flutter, Og, is given by
?=c (w,-w,) (2.3-8)
g o 2 17 ° :
Combining Eqs. 2.3-8 and 2.3-7 gives
2
2 Gg
o ==, (2.3-9)
©1%

h i .
thus relating oh and cg

*
The units of TBE are seconds and flutter is dimensionless, being

the ratio of two velocities (see Eq. 1-1).
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Note in Eq. 2.3-9 that as w, tends to zero, o, tends to infinity

1 h

even though cg is arbitrarily small. This again indicates the adverse
effect low frequency flutter components have on TBE and the desirability
of using servo speed control with sufficient response to eliminate the
exorbitant TBE due to low frequencies in the flutter spectrum.

One of the properties of a Gaussian random variable is that any
linear operation on the variable yields another Gaussian random variable.
Since flutter is a Gaussian.random variable and since TBE is the result
of the linear operation of integration on flutter, TBE is also a Gaussian
random variable. Thus flutter and TBE are Gaussian, and meaningful
peak-to-peak values might be given as the + 3 o values, i.e.,

peak-to-peak TBE = 6 O (2.3-10)

h,
and

peak-to-peak flutter = 6 cg. (2.3-11)

Random flutter and TBE have now been treated theoretically in that
the spectral densities and probability density functions have been de-
scribed. In the next few sections this theoretical description is applied
to several cases of recorded signals. In particular the effect of random

flutter on a recorded sinusoid and on digital data is investigated.

2.4 EFFECT OF RANDOM FLUTTER ON A DIRECT RECORDED SINUSOID

Now that random flutter and TBE have been described theoretically
it is instructive to consider the effect of such flutter on a recorded
sinusoid. The results given here are from an article by Chao.11

Let the recorded signal be given by

e.(t) = sinw t (2.4-1)
i s

10
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Assuming direct recording the recorder output voltage is given‘'by
Eq. 2.1-22. Upon letting v, = V1 and neglecting the constant multipliers

and the AM term, Eq. 2.1-22 gives
e (t) = cos w_ [t + n(e)] . (2.4-1)

Chao has analyzed this signal for spectral density when h(t) is a
Gaussian random process having a spectral density like that shown in

Fig. 2.3-2., The results are presented below.

2

2.4.1 Case 1: w O <<l

2
s h
Case 1 corresponds to small TBE perturbations. Chao shows that a

22
discrete spectral component appears at w = W having power of 1/2 (1-w Uh)

. 2 2
and the remainder of the power, 1/2 w O

h is "smeared" continuously

about w = w_ as shown in Fig. 2.4-1. The distribution of the continuous
. . . - . 2

spectrum with respect to w is Gaussian with variance o& = 2 wlmz as

shown in Fig. 2.4-1. The spectral density of eo(t) given by Chao is

- (w-w )2

s
2

2 2 1 GJ% m%wz

& (W =1/2 (1-0 0 )6w-w ) + e , (2.4-2)
e e s h s 3/2 1/2
0 0 4Jﬁ‘m1 w,
where Go = gpectral density of flutter, and
G(w—ws) = Dirac delta function.

If @e e(w) is integrated over all frequencies from O to infinity, the
oo

total power in eo(t), Pt’ is

a0

ne>

& (w)dw = 1/2 ,
e e
O O

as expected from Eq. 2.4-1.
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2 2
2.4.2 Case 2: w_ o >>1
s 'h
Case 2 corresponds to severe TBE. Chao shows that the spectral
density of eo(t) in this case is
2
- (w-w )
s
2
1 L ch w1w2
& (W) = e ° : (2.4-3)

Observe now that no discrete component appears at w = Wy because the
TBE is severe enough to '"smear" the power in the sinusoid continuously
with respect to w. The distribution is seen to be Gaussian with a

variance of

2 2 2
= 2 -
ods W Op @9 (2.4-4)
Using Eq. 2.3-9 to express Eq. 2.4-4 in terms of o; yields
o 2 2w202 (2.4-5)
w s'g

s

Fig. 2.4-2 shows @e e(w) for two different signal frequencies,
o0

w and wsz, where wsz > w Note that the smearing effect is more

sl sl”’

pronounced as R increases, tending toward a flat spectral density for

1 .
arge _

2.5 EFFECT OF RANDOM FLUITER ON DIGITAL DATA

In this section consideration is given to the effect of recorder
flutter upon the bit-to-bit spacing (defined as the time interval between
the leading edges of two consecutive bits in a recorded digital sequence)

and upon the bit rate of the recorded digital signal. The tape recorder
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flutter is assumed to be Gaussian with a flat spectral density. The

results are given for a recorder with or without a speed-control servo.

2.5.1 Effect of Random Flutter on Bit-to-Bit Spacing

Let a digital signal be recorded at a constant bit rate of RO bits/sec.,

as represented by Fig. 2,5-1(a). 1Ideally, the bit-to-bit spacing, T, upon

playback, is T = l/RO seconds as shown in Fig. 2.5-1(a). However the

.th .. . . ; .
i bit in the digital sequence does not occur at its correct location

in time, t, , where t = i/R , due to the TBE at t = t, , h{(t. ), as
; b. b. o b. b.
i i i i
shown in Fig. 2.541(b). The function, h(tb ), gives the time in seconds
i
by which the ith bit deviates from the correct time location, tb , as
i

shown in Fig. 2.5-1(b). Since there are N bits in the recorded digital
sequence, there is a TBE, h(tb ), associated with each of the N bits,

i
and the set of N TBE's is composed of samples of the Gaussian random pro-

cess, h(t), taken every l/R0 seconds. Since N is very large, the set of

TBE's is characterized by a Gaussian probability density function with

i 02 H 2
variance o . Hence -
2
1 20,
ph(x) = e o , (2.5-1)

J2T Gh

where ph(x) 2 probability density function of h(tb ).
i

In determining the probability density of the bit-to-bit spacing,

tB’ upon playback, it is necessary to find the correlation between the

two consecutive TBE's, h(tb ) and h(tb ). This is evident from the
i i+l

fact that ty in Fig. 2.5-1(b) can be written as
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t, = [} + h(t la - E + h(t )]
B Lbiy Pi+y b; b;
= [L -t ] + [E(t ) - h(t )]
bisn By Bin b;
But as seen in Fig. 2.5-1(a), (t - t, ) is just 1/R_so t, may be
b. b. o B
i+l 1
written as
ty = 1/R0 + h(tb. ) - h(tb.) . (2.5-2)
i+l i

Since h(tb ) for all i is a zero-mean Gaussian random variable (see
i

Eq. 2.5-1), the mean of t, is 1/Ro seconds, as one would expect.

B

Eq. 2.5-2 shows that t_ is dependent upon the TBE at two consecutive

B
bit times, tb and tb . To find the probability density of tB it is
i i+l
necessary to find the correlation between the random variables h(tb ) and
i
h(t ) which is defined as
b.
i+l

D4

Rh(t - tbi) = Rh(T) ,
where Rh(T) is the autocorrelation of h(t). Rh(T) is found by taking

. . 12,
the inverse Fourier transform of H(w), 1i.e.,

a0

Rh(T) £ ( H(w)cos wt dw.

Substituting Eq. 2.3-6 in this definition gives

2 w, W W, W,T
Rh(T) =0, cos w T - — COS W,T + (Si wlr-Si mzr),(2.5—3)
Wyt Wy % @79
X
i nelt
where Si x 4 S1T3« = sine integral function.13

Y
(o]
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Since co2>>w1 for a typical recorder, Eq. 2.5-3 becomes
(t) = 62 w,T + w T (81 w, T Si )] (2.5-4)
Rh =0 coSs 1 wl wl ~ o1 sz . .
Chao gives an approximation for the Rh(T) given by Eq. 2.5-4 as
2
- W, T
R (%) = Gie 2 (2.5-5)
Letting T = 1/Ro in Eq. 2.5-5 gives
2
2 —mlwz/R
R (1/R) = Ole © (2.5-6)

Using Rh(l/Ro), the probability density for bit-to-bit spacing, ty is

derived in Appendix A and the result 1is

2
- w.w,/R
- (- 1/R0)2 /Lmi[l e 12 °]

P = (2.5-7)

2 1/2
2 —wlmz/Ro /
2T 2(7h 1 ~ e

where Pt () = probability density for bit-to-bit spacing.
B

Note in Eq. 2.5-7 that ty is normally distributed with variance

2
Gt , where
B

(o] = 20 l - e . (2.5-8)

Substitution of Eq. 2.3-9 into Eq. 2.5-8 yields o, in terms of dg’ i.e.,
B
- e /R2 1/2
20 - e ¥ 0
o . (2.5-9)

t g
B w1w2
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If w, is very small (as on a tape transport without servo speed control)

or R0>>w2, then the exponential in Eq. 2.5-9 may be expanded in a series
W w
and second and higher order terms of 5 neglected since, in this case,
R
W, @, ' ' o
—5 << 1. This yields
R
O
2
2 {1 -1 - w,w,/R )} 12
172" 7o
o, g,
B " g
©1%2
or

GtB ={/2'/R0}0g. (2.5-10)

P (£) may now be written as
ts
- - 1/R )22 [C«/E‘/R )o ]2
. o o g
P (£) = (2.5-11)

tg J 2 («/T/Ro)ag

In summary, the results of this section have shown that random
flutter causes the bit-to-bit spacing of a digital signal to vary randomly
with a Gaussian probability density function. These results are valid
for a recorder with or without servo control. In particular, Eq. 2.5-11

w,w

is valid in either case (as long as —5- <<1). Consideration is given
R
(o]

in the following section to the effect of flutter on the bit rate of a

digital signal.

2.5.2 Effect of Random Flutter on Bit Rate

The instantaneous bit rate from a digital recorder is directly
proportional to the instantaneous tape velocity under the read head. 1If
the tape packing density in bits/meter due to the recorded digital signal

is D, then the instantaneous bit rate is
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r(t) = Dv(t), (2.5-12)
where v(t) = instantaneous tape velocity.
But v(t) can be expressed in terms of flutter from Eq. 1-1, and r(t)
then becomes

r(t) = DVg(t) + DV, (2.5-13)
Observe that DV is just the mean bit rate, Ro, so Eq. 2.5-13 may be
written as

r(t) = R+ Rog(t). (2.5-14)

. . 3 . . 2
Since g(t) is a zero-mean Gaussian random process with variance cg,
r(t) is seen to be a Gaussian random process with mean R0 and variance

2 2
RO . Also since g(t) has a flat spectral density as shown in Fig.

°c g
2.3-1 the variation of r(t) about RO has a flat spectral denéity, @rr(w),

given by
& (o) = RG . (2.5-15)
rr [1Ne]

In Section 2.4 it was shown that a sinusoid perturbed by random

flutter gives a recorder output of
eo(t) = cos w_ [t + n(v)] (2.4-1)

The instantaneous frequency, f(t), of this flutter-perturbed sinusoid

is the time derivative of the argument, given by
£(t) = fS + fsg(t). (2.5-16)

Comparison of Eqs. 2.5-14 and 2.5-16 shows that if fS = RO the instan-
taneous bit-rate variations of a digital signal are the same as the
instantaneous frequency variations of a sinusoid when the bit rate and

frequency are numerically equal. This fact is exploited in Sections

3.2 and 3.3.
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2.6 MEASUREMENT AND PRESENTATION OF FLUTTER DATA

An experimental setup for obtaining flutter and TBE data is
diagrammed in Fig. 2.6-1. Eqs. 2.1-19 and 2.1-20 indicate that g(t)
and h(t) are dependent upon the playback-to-record mean speed ratio,
V2/V1. Therefore all flutter measurements described herein must be
made at the ratio of interest.

To demonstrate how the setup shown in Fig. 2.6-1 is used to obtain

flutter data let the direct recorded signal be
e.(t) = E sin w t. (2.6-1)
i o o

Eq. 2.1-22 gives the recorder output voltage as

eo(t) ='K Eowo [1 + g(t)] cos [wot + woh(t)] . (2.6-2)

The recorder output is fed to the input of an FM discriminator as

shown in Fig. 2.6-1. The discriminator is balanced to zero output voltage
for a frequency input of w rad./sec. The output of the discriminator is
proportional to the instantaneous frequency of the cosine term which is

just the derivative with respect to time of its argument, i.e.

= 2.6-
ed(t) deog(t), (2.6-3)
where ed(t) = discriminator output voltage, and
Kd = discriminator gain in volts/rad./sec.

Since a typical instrumentation recorder has appreciable flutter com-
ponents out to approximately 10 kc, any lowpass filter incorporated in
the discriminator output should have a cutoff frequency of at least 10
ke to pass all appreciable flutter components.

The high-pass filter shown in Fig. 2.6-1 is used to prevent saturation
of the integrator (due to discriminator drift) used in determination of

TBE. The cutoff frequency of the high-pass filter is 0.16 cps. A typical
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instrumentation recorder has no appreciable flutter components below
this low frequency, hence g(t) is unaffected by the presence of the
filter.

Substitution of peak-to-peak or rms discriminator output voltage
into Eq. 2.6-3 yields peak-to-peak and rms flutter, respectively. The
peak-to-peak discriminator output voltage is observed on an oscillo-
scope and the rms value is measured with the rms voltmeter as shown in
Fig. 2.6-1.

TBE information is obtained as shown in Fig. 2.6-1 by integrating
the discriminator output. The integrator output voltage, eI(t), is

t

ed(x)dx = K_K woh(t), (2.6-4)

eI(t) = K X4

I
o

where KI = integrator gain. Observation of peak-to-peak eI(t) on the
oscilloscope and substitution into Eq. 2.6-4 yields peak-to-peak TBE.

Care must be taken in all flutter measurements described thus far
to insure low system noise. This is accomplished by connecting a
sinusoidal oscillator to the discriminator input and noting the peak-
to-peak integrator and discriminator output noise on the oscilloscopes
shown in Fig. 2.6-1. The outputs should be a small fraction of the
peak-to-peak voltages with the recorder supplying the discriminator input
signal.

The spectrum of flutter is obtaiﬁed as shown in Fig. 2.6-1 simply
by feeding the discriminator output into a wave analyzer. Another
standard presentation of flutter data is to low-pass filter the dis-
criminator output with a variable-cutoff filter as shown. The rms or

peak-to-peak flutter is then plotted as a percent versus the filter

cutoff frequency. The plot is called a cumulative flutter graph.
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Typical plots of flutter spectrum, flutter, TBE, and cumulative
flutter are shown in Figs. 2.6-2 through 2.6-5, respectively. A
Parsons Model AIR-940 airborne recorder was used to obtain this data,

and the recorded frequency was 70 kec.
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Fig. 2.6-3 Instantaneous Flutter
Vertical: 0.15%/division
Horizontal: 0.5 msec./division

Fig. 2.6-4 1Instantaneous TBE
Vertical: 7.5usec./division
Horizontal: 50 msec./division
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CHAPTER 3

PROPOSED SYSTEM FOR SMOOTHING BIT RATE VARIATIONS IN RECORDED
DIGITAL DATA

As shown in Section 2.5.2, the effect of flutter on digital data
is a Gaussian variation in the recorder output bit rate. 1In this
chapter a system is proposed for reducing this variation. First, the
proposed system is described quantitatively, and then means for deter-
mining the system parameters are developed by use of the cumulative
flutter graph. Secondly, the theoretical results are coméared with
ressults from an analog simulation of the system. Finally, a design
example is worked out to illustrate the determination of the system

parameters.

3.1 DESCRIPTION OF PROPOSED SYSTEM

The system proposed for smoothing bit rate variations is shown
in Fig. 3.1-1. The buffer is a flip-flop register in which the incom-
ing bits are stored serially until read out by the gating circuitry.
The rate at which bits are read from the buffer is equal to the frequency
of the voltage-controlled oscillator (VCO). The VCO consists of a
multivibrator having a center frequency equal to the recorder mean bit
rate. The voltage for controlling the VCO frequency is derived, as
shown in Fig. 3.1-1, by sensing the number of bits stored inthe buffer
(called queue length) above or below a reference level of q, bits. More
will be said about this reference level later. The output voltage from
the queue sense circuit is filtered by G(s), which acts as a low pass
filter, and the filtered output is used to control the VCO frequency,

hence the output bit rate. Definitions relating to Fig. 3.1-1 are
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given in Eqs. 3.1-1.

ri(t) = instantaneous buffer input bit rate,
ro(t) = instantaneous buffer output bit rate,
q(t) = number of bits stored in the buffer above or
below the reference of q, bits,
A
Ri(s) = Laplace Transform of ri(t), =L [ri(t)] ,
R (s) =1 [r (t)] , (3.1-1)
o o
KICHERA PIS] I
G(s) = control loop filter transfer function,
KV = VCO gain in cps/volt, and
KB = Buffer gain in volts/bit.

Further to describe and to analyze the buffer control system the
buffer is now mathematically defined. The number of bits read into

the buffer, qi(t), is simply

q.(t) = r.(£9d< + q_, (3.1-2)
i i o)
o)
where qO = reference number of bits in buffer at t = 0. Similarly, the
number of bits read out of the buffer, qo(t), is

t
qo(t) = ro(—<)do< . (3.1-3)

o)
The total number of bits in the buffer, qt(t), is just the difference
between qi(t) and qo(t), i.e.,

t
q, (t) = q (t) - q_(1) = [ri(-O - ro(.o] i+ q_,
(o]

or
t

q,(t) - q_ = [ri(«) _ ro(.o] a<. (3.1-4)

o]
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It follows that

q(t) = qt(t) -q, - (3.1-5)

Eq. 3.1-4 shows that when ri(t) = ro(t), qt(t) =q,- The filter,
G(s), is specified later in this report in a way such that the steady-
state q(t) for a step in input bit rate is zero. Therefore if ri(t)
decreases, qt(t) falls below q, so the voltage, KBq(t), shown in
Fig. 3.1-1, goes negdative thus forcing the VCO frequency, ro(t), to
settle at ri(t). After the steady-state condition ri(t) = ro(t) is
again reached, q(t) will again be zero. Analogous behavior is noted
if ri(t) increases. No matter how ri(t) varies, the system acts in such
a way to control ro(t) so as to reduce q(t) to zero. To accommodate
positive and negative changes in ri(t), it is therefore desirable to
make q, equal to half the number of flip-flops in the buffer.

The number of flip-flops required in the buffer (hereafter called
buffer capacity, CB) depends on the flutter of the recorder. CB must
be large enough so that qt(t) is always greater that O and less than
CB. The condition, qt(t) < 0, is called buffer underflow, which means
that bits are being read out of the buffer faster than they are supplied
by the recorder. The condition, qt(t) > CB’ is called buffer overflow,
which means that bits are not being read out fast enough to handle all
the bits being supplied by the recorder. Both overflow and underflow
are equally undepirable since both result in erroneous data transmission.
The constraints on q(t) to avoid overflow and underflow are

-q, < q(t)< + q, > (3.1-6)
where qO = CB/Z . (3.1-7)

Section 3.2 gives the means for specifying CB'
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From Egqs. 3.1-4 and 3.1-5
. t
a® = [ [ -r ] e (3.1-8)
o
Taking the Laplace Transform of both sides of this equation yields
R;(s) -R (s) (3.1-9)

Q(s) =

s

From Eq. 3.1-9 the block diagram of the buffer may be drawn as shown
in Fig. 3.1-2. Combining the loop filter and VCO from Fig. 3.1-1 with
Fig. 3.1-2 yields the block diagram of the complete buffer control system
as shown in Fig. 3.1-3. By inspection of Fig. 3.1-3, the following

transfer functions may be written to describe the buffer control system.

Ro(s) _ KBKVG(S) , (3.1-10)
R, (s) s + K K G(s)

and
Q(s) _ '
R.(s) s+ KK G(s)

Specification of the loop filter, G(s), will complete the theoretical
description of the proposed buffer system for smoothing bit rate variations

occurring in digital data. To do so, rewrite Eq. 3.1-10 as

RO(S)
s - KBKVG(S) . (3.1-12)
Ri(S) s + KBKVG(S)
s
Inspection of Eqs. 3.1-2 and 3.1-3 reveals that
RO(S)
s = Qo(s)’
(3.1-13)
and R.(s) q
i _ 0
s - Qi(s) s
where Qo(s) = L [qo(tij , and
Qi(s) = L [qi(t)J .
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Ls
Using Eqs. 3.1-13 in Eq. 3.1-12 yields
Qp(s) _ KpK G(s) (3.1-14)
Q.(s) - o s+ KgKRGEs)
t s

Using Eq.3.1-14 it is now possible to establish the criterion
for choosing G(s). It is highly desirable to choose G(s) such that
a suitable measure of the queue length be held to a minimum in the
interest of system economy. This may be accomplished by minimizing
the mean-square queue length, qz(t)', by using a Wiener optimum filterll+
Jaffe and Rechtin15 have analyzed a transfer function like that in Eq.

3.1-14 in connection with phase-locked loops and the result given is

) w
2 s+—2 s+.—n o
G(S)" wn ;1/2—‘=K 2 ’
KBKv s G s (3.1-15a)
2 wn
where K., = = filter gain, and (3.1-15b)

wn = gystem parameter.
The G(s) given by Eq. 3.1-15a is therefore the Wiener optimum filter
for minimizing the mean-square queue length in the buffer, thereby
minimizing the required buffer capacity, CB.
Substitution of Eq. 3.1-15a into Eqs. 3.1-10 and 3.1-11 gives

the following transfer functions for the optimum buffer system.

[

Ro(s) wé‘wns + wn2
H (s) = = (3.1-16)
1 Ri(S) 2 \/1 2
8 +ef2 wns + mn

and
s

Q(s) _ . (3.1-17)
Ri(s)

ne

H, (s)
2 2 2
s +4§‘wns * o



In Eq. 2.5-15 the spectral density, ®

L6

Eqs. 3.1-16 and 3.1-17 reveal that the optimum buffer control system is
a second order system with damping factor of 1A¢§‘and natural
frequency of W .

Fig. 3.1-4 is a plot of the transfer function ‘Hl(jw)l . Note
that bit rate variations above a frequency of qﬁ?cnn are attenuated
at the rate of 6db/octave. Therefore specification of the system
parameter, w determines the critical frequency in Fig. 3.1-4.
Fig. 3.1-5 is a plot of W le(jw)I . Note that input bit rate varia-
tions at frequencies between .lwn to 10(on give the greatest contribu-

tion to q(t).

3.2 SPECIFICATION OF BUFFER CAPACITY; CB

In this section a means for determining the buffer capacity required
to avoid overflow or underflow using the cumulative flutter graph of the
recorder is given. The flutter spectrum is assumed to be flat over at
least the frequency range from .lwn to 10wn, to which q(t) is most
sensitive. The flutter is also assumed to be Gaussian. Both of these
assumptions seem reasonable in light of the discussion in, Chapter I and
are shown in Section 3.3 to yield results agreeing with results obtained
from an analog simulation of the buffer system.

From Eq. 3.1-17 it can be shown that

IHz(j(.\))Iz =(—15)——Tr1—-— . (3.2-1)
] (w\ 1

rr (w), of input recorder bit
ii

rate variation was shown to be

2
® (w) =R G_. (3.2-2)
riri (o] o
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Using the relation between input and output spectral density for a

linear system,16 the spectral

! i 2
AOR IHZ(Jw)| 5, (@.

density of q(t), &_ (w),
ensity of q(t) a9 w)

r,
11

is

Substituting Eqs. 3.2-1 and 3.2-2 into Eq. 3.2-4 yields

w2 & (@)
on_qq "

R2 G
o o

e (/e )2
(o] n

is plotted in Fig.

w (w/w )LL + 1
n

(3.2-4)

(3.2-5)

3.2-1. Note again that frequencies

between .lw and 10w ~are the major contributors to q(t).

The queue

length response falls off below w = w because the output bit rate

is allowed to change at rates below w ( see Fig. 3.1-4), and above W

the response falls off due to the integrating effect of the buffer

(see Egs.

3.1-8 and 3.1-9).

Since the output of a linear system is Gaussian when the input is

Gaussian,17

it follows that q(t) is Gaussian because ri(t), is Gaussian.

Since from Fig. 3.2-1 *"dc" is not passed, q(t) has a zero mean. The

variance

over all

Straight

2
of queue length, cé,

frequencies, i.e.,

Q
u

forward evaluation of

is therefore found by integrating @qq(w)

[ o]
d (w) dw
aq
O
2 oo 2

Ro GO (m/wn)
w2 o (w/w )4 + 1

n n

this integral yields

dw .

(3.2-6)
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2
2 ROGOH

T T ———
1 27 w,

. (3.2-7)
The spectral density of flutter, Go’ may be approximated in terms

of rms flutter in the following manner. The flutter spectrum of an

actual recorder is not perfectly flat as has been assumed but G0 can be

approximated by the average spectral density below w = IOwn, since this

is the frequency range which has the greatest effect on queue length as

seen in Fig. 3.2-1. The average flutter spectral density over the frequency

range from O to 10(.0n is

2
o
g10wn
GO T — (3.2-8)
10w
n
where o is the rms cumulative flutter at w = 10wn. Substitution

&100
n
of Eq. 3.2-8 into Eq. 3.2-7 gives

2 2 2
Gq = (1/356) (Ro/fn) Gg )

10w
n

or

c = (1/18.88) (R /£ ) o ) (3.2-9)
q o n g

10w
n

where w_ = 2nf .
n n
The queue length, q(t), has been determined to be a Gaussian random
variable and from Eq. 3.2-9 it is seen that the standard deviation is
proportional to the ratio of input bit rate to the buffer natural frequency
and to the rms cumulative flutter at w=10wn. Since q(t) is Gaussian, its
probability density function, pq(*), may be written as
2 2
- £ /20
g

pq(.,o = = 4 (3.2-10)

2n O
q
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Defining the required buffer capacity as k times the rms queue, i.e.,
Cy = knq, (3.2-11)
Pq@*) then becomes
2 2
- (kD /2CB
Pg =-lcf = (3.2-12)
! B J2n
The probability of buffer overflow or underflow,Pou(k), is just the
probability thath(t)|> CB/2 which is
+ CB/2
Pou(k) =1 - pq(x) det
- CB/Z
(3.2-13)
+ 2 2 2
) S VN
=1 - —-— e s d«
V271 C
B - CB/2
. . ke« .
Making the change of variable, x = —, Eq. 3.2-13 may be written as
C
B
+ k/2 9
1 - x /2
Pou(k) =1 - —=— e dx. (3.2-14)

Pou(k) is plotted versus k in Fig. 3.2-2, The procedure for
specifying the buffer capacity required is as follows. First, the
desired probability of overflow or underflow is specified, which deter-
mines k from Fig. 3.2-2, Secondly, Eq. 3.2-9 is used to determine Gq’
where oglOw is found from the cumulative flutter graph like that in
Fig. 2.6—5.n Finally, C_ is then specified by Eq. 3.2-11.

B

One possible way to decrease the probability of buffer overflow or
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Fig. 3.2-2 - Probability of Buffer Overflow or Underflow
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underflow is to make the buffer gain, KB (volts/bit), adaptive as
shown in Fig. 3.2-3. This is accomplished simply by designing the
logic circuitry associated with the queue sense block shown in Fig.
3.1-1 such that the buffer gain is increased for a queue length greater
than +(k/2)cq or less than —(k/Z)Oq. This requires that the buffer
capacity be made a little larger than that specified in Eq. 3.2-11, as
shown in Fig. 3.2-3, to provide a few bits on the '"ends" of the buffer

for the increasing buffer gain. As long as
laco>] < (/D)0

KB is constant at the value dictated by KG, KV, and W, in Eq. 3.1-15b.
Whenlq(t)l > (k/2)od, KB increases, thus forcing the VCO frequency to
increase (or decrease) more rapidly than normal to compensate. Note

from Eq. 3.1-15 that an increase in KB results in an increase in w -

3.3 ANALOG COMPUTER SIMULATION OF BUFFER SYSTEM

Eq. 3.1-17 gives the transfer function from input bit rate to queue
length in the buffer. An analog computer simulation having this fransfer
function is shown in Fig. 3.3-1. Simulation requires a voltage propor-
tional to the instantaneous bit rate of a digital signal to use as the
input to the analog computer. Recall from Section 2.5.2 that the frequency
variation of a recorded sinusoid upon playback is equal to the bit-rate
variation of a digital signal recorded on the same recorder when the
recorded frequency of the sinusoid and the recorded bit rate are equal.
Therefore a sinusoid having a frequency equal to the bit rate of interest
is recorded and then frequency demodulated using an FM discriminator upon
playback. This yields an output which is proportional to the bit rate

variations of a digital signal. The discriminator output voltage is used
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as the input to the simulated buffer as shown in Fig. 3.3-2.

Using the computer simulation, experimental results were obtained
for peak-to-peak queue length at different values of @ for the recorder
having the cumulative flutter graph shown in Fig. 2.6-5. The peak-to-
peak queue obtained experimentally in this manner is plotted in Fig.
3.3-3 as a function of fn along with the theoretical values obtained
by taking peak-to-peak queue to be 6Gq, where cq is obtained from
Eq. 3.2-9 and Fig. 2.6-5. The close agreement between theoretical
and experimental values supports the theoretical model which has been

used.

3.4 DESIGN EXAMPLE

An example 1s given here for the determination of the parameters
for the buffer system for smoothing bit rate variations using the results
of the preceeding sections.

Suppose that the recorder with which the system is to be used has
the cumulative flutter graph shown in Fig. 2.6-5, and it is desired to
attenuate bit rate variations of a 70 kilobit/sec. digital signal from
the recorder above approximatelyJE‘lo = 14 cycles/sec. (This is chosen
for convenience). Fig. 3.1-4 then indicates that

2n(14)
1.4

w_ = 62.8 rad./sec. (3.4-1)

n

is the proper choice for the buffer natural frequency.
The VCO must be chosen to have a center frequency of 70 ke since
this is the mean bit rate. The gain, Kv’ of the 70 ke VCO in a telem-

etry package typically has a value of

K, = 2.1 x 10> cps/volt, (3.4-2)
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so this realistic value is used in this example.

The filter transfer function, G(s), given by Eq. 3.1-15 can be
realized either by the active element shown in Fig. 3.4-1(a), or
approximated by the passive element shown in Fig. 3.4-1(b). The
active realization is more flexible in that the filter gain, KG’ can
be set easily to any desired value whereas the passive approximation
must satisfy the inequalities given in Fig. 3.4-1(b). The active real-
ization is assumed here.

The choice of component values in the filter is accomplished by

noting in Fig. 3.4-1(a) that

1 wn
— =, - (3.4-3)
RZC vA?
so from Eq. 3.4-1,
il_c = .6_2_.§ = Lj,l.],.L‘,,
y R/
or
RZC = ,0225, (3.4-4)
Choosing C = 0.1 ufd, Eq. 3.4-4 gives R2 as
R2 = 225K ohms. (3.4-5)
Observe now that Eq. 3.1-16 gives
KK Ko =v2 w_. (3.4-6)
Substituting Eq. 3.4-2 in Eq. 3.4-6 yields

KBKG = .0423. (3.4f7)

Choosing
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R \\\Tigh Gain Amplifier
1 .
A —3
E1 v Ez(s)
2 C
o- o
E.(s) -R_ s+1/R C s+w Af2
2 2
G(s) = —— = =% — = =g
EI(S) R1 s s
(a) Active Realization of G(s)
Rl
R
>
2 R1 >R2
El(s) E2(S) R C>>1
| -I-. |
E,(s) R, s+1/R,C i s+wn/J§“
G(s) = ——— =-—————————KG——__
EI(S) R1 s s

(b) Passive Approximation of G(s)

Fig. 3.4-1 - Realization of Filter Transfer Function, G(s)
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KB = 0.1 volt/bit, (3.4-8)
then Eq. 3.4-7 gives

KG = 423, (3.4-9)
It is seen in Fig. 3.4-1(a) that

KG = - (3.4-10)

1

Substituting Eqs. 3.4-9 and 3.4-5 in Eq. 3.4-9 determines Rl’ i.e.,

R1 = 532K ohms.

To determine the required buffer capacity, k in Eq. 3.2-11 must

be specified to give the desired probability of buffer overflow or
underflow, Pou(k). Suppose that it is specified that

P (k) < 10'6,

ou
then Fig. 3.2-2 shows that if

k = 10,
this specification is satisfied. Eq. 3.2-11 then gives the required
buffer capacity for P_ (k) < 1075 as

C, = 100 . (3.4-11)

B q
Eq. 3.2-9 is next used to determine Od, but first © must be deter-

€1 0w
n

mined from the rms cumulative flutter graph in Fig. 2.6-5. For this

design example, © is the rms cumulative flutter at

10w
n

10cun = 2n(100) radians/sec,
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which if not expressed in per cent is

o = .00075. (3.4-12)
glOmn

N
Since RO = 7.0 x 10 bits/sec. and fn = 10 cycles/sec. for this example,
substitution of Eq. 3.4-12 in Eq. 3.2-9 determines od, i.e.,
(Ro/fn)

g = ————
?  18.88 g10mn

_ (7 x 10%/10)
18.88

(.00075)

Q
]

.278 bits. (3.4-13)
Substituting Eq. 3.4-13 in Eq. 3.4-11 gives

CB = 2,78 bits,

Since the buffer must have an integral number of flip-flops, three
flip-flops are required for the example system.

The bit-rate-smoothing buffer system for which the parameters have
been determined attenuates bit-rate variations at frequencies greater
than 14 cycles/sec. at the rate of 6 db/octave, as shown in Fig. 3.1-4.
The buffer capacity required to achieve a probability of overflow or
underflow of 10_6 has been shown to be 3 bits for the recorder having
the cumulative flutter graph of Fig., 2.6-5. Since this cumulative flutter
graph is typical, this buffer capacity of 3 bits might also be considered
typical. However, unpredictable transient changes in the bit rate, which
can be classed as non-stationary flutter, may require that the buffer
capacity be made somewhat greater or that the buffer gain, KB, be made
adaptive as shown in Fig. 3.2-3 if large peak queues are to be avoided.

Consideration might be given to simply using say a 10 bit buffer system




which would accommodate practically any recorder flutter.
It should be realized that both the theoretical analysis and the
simulation of the buffer system considered in this report is based upon

stationary flutter.

64
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CHAPTER 4
ON THE POSSIBILITY OF USING A PHASE-LOCKED LOOP FOR CONTROLLING BUFFER

READOUT RATE

The possibility of using a phase-locked looplg (PLL) for controll-
ing buffer readout rate as shown in the scheme in Fig. 4-1 is investi-
gated in this chapter. A sinusoidal reference signal having a fre-
quency of R0 cps is recorded on Track 2 at the same time a digital sig-
nal of bit rate Ro bits/sec. is recorded on Track 1 of the recorder. It
was shown in Section 2.5.2 that the bit rate and the frequency vary about
Ro in the same manner due to recorder flutter.

The PLL tracks the reference sinusoid within a phase error of less
than n/2 radians as long as phase lock is maintained. The VCO output
in the PLL is used to clock bits from the buffer, which is a flip-flop
register just as in Chapter 3. One bit is clocdked out of the buffer
on each cycle of the VCO.

The instantaneous frequency of the reference sinusoidal signal 1is
equal to the instantaneous buffer input bit rate of the digital signal
as described in Section 2.5.2. Letting ri(t) represent the instan-
taneous frequency of the sinusoid, then the instantaneous phase in

radians 1is
t
ei(t) = 21 ri(*)d* ; (4-1)

where Oi(t) = instantaneous phase of reference sinusoid in radians.
Letting the instantaneous frequency of the VCO in the PLL be ro(t),
which is also the instantaneous buffer output bit rate, then the

instantaneous phase of the VCO frequency is
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t

eo(t) = 2n ro(x)d-( , (4-2)

where eo(t) = instantaneous phase of VCO in the PLL. The phase error in
the PLL is just the difference between the phase of the reference sinu-

soid and the VCO, i.e.,

A
d(t) = Gi(t)-eo(t), (4-3)

where ¢(t) = PLL phase error. Substituting Eqs. 4-1 and 4-2 into 4-3

yields

t
8(t) = zn/ (s 0] e (t-)
o

Using Eq. 3.1-8, which gives q(t) in terms of buffer input and output

bit rates, in Eq. 4-4 yields the simple result,
o(t) = 2nq(t) , (4-5)

which states that the phase error in the PLL is equal to 2mn times

the queue length in the buffer. Since - g < ¢ (t) < + g for the PLL

to remain locked with the reference sinusoid, the maximum peak-to-peak
phase error that can be tolerated is

T[_
- GP T

Eq. 4-5 then shows that the peak-to-peak queue can only be 1/2 bit.
The significance of 1/2 bit peak-to-peak queue length in the
buffer is that the input digital signal is delayed or advanced by

1/4 of a bit period with respect to the output digital signal.
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Practically, of course, this means one bit is stored in the buffer
for a maximum of 1/4 of a bit period. The significance of a fraction
of a bit queue length in the case of the buffer system in Chapter 3
is the same.

The frequency transfer function for a PLL can be shown to be
the same as for the buffer system of Chapter 3?0 given by Eq. 3.1-17

as

2
Ro(s) ~@‘wns o

= (3.1-17)
Ri(s) 52 +v6‘w s + W 2
n n

The very importapt difference however is that the system given in
Chapter 3 has no constraint on q(t) whereas the system using the PLL
does in that phase error must be held between + m/2 radians. Eq. 4-5
shows that the constraint on ¢(t) in turn constrains q(t) to be
between + 1/4 bit, where the significance of the fraction of a bit
has been interpreted above.

Since the transfer functions for the PLL buffer system and the
proposed system presented in Chapter 3 are the same, Fig. 3.3-3
shows that for the recorder with the cumulative flutter graph given
in Fig. 2.6-5, w for the PLL system shown in Fig. 4-1 would have to
be no less thak approximately 2n(50) rad/sec. to meet the constraint
that peak-to-peak q(t) be no greater than 1/2 bit. Even with this

large W there is still the possibility that some transient change

in recorder speed will force ¢(t) to fall outside the range - g to + % ,

thus making the PLL lose lock with the sinsusoidal reference signal.
Suppose, for example, that the recorder undergoes a transient

drop in speed, forcing the PLL to lose lock. The VCO in the PLL is
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then clocking bits out of the buffer faster than the recorder is
supplying them. Consequently the buffer quickly underflows, or
assuming an infinite buffer capacity with a large queue, the queue
length drops until the VCO again locks onto the reference sinusoid,
at which time the queue length stabilizes. Thus there is a steady-
state queue length accumulated which cannot be eliminated since
there is no feedback from the buffer to the PLL. Analogous behav-
ior is noted if a transient increase in recorder speed occurs to
cause the PLL to lose lock. 1In this case, the queue length increases
until phase lock occurs, again resulting in a steady—stgte queue
length which cannot be eliminated.

Even if the requirement that W, be greater than approximately
2n(50) rad./sec. is not objectionable, the accumulation of a steady-
state queue length upon loss of phase lock certainly is. It is
therefore concluded that the system shown in Fig. 4-1 using a PLL
to control buffer readout is unsuitable. The system proposed in
Chapter 3 is more desirable in that queue length always returns to
a zero steady-state value, and w ~may be made as small as desired at

the expense of a larger buffer capacity.
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CHAPTER 5

CONCLUSIONS

The purpose of this report is generally to lay a theoretical
foundation for the treatment of flutter in instrumentation magnetic
tape recorders and specifically to propose a system to be used for
smoothing bit-rate variations due to flutter in digital data. Flutter
is treated from the standpoint of tape velocity variations during the
record and playback operations., Both FM and direct recording techniques
are considered. The major flutter effect for both techniques is shown
to be a perturbation of the signal time base.

After developing general expressions for flutter-perturbed
signals, the results are applied to the case of a sinusoid perturbed
by sinusoidal flutter. It is shown that flutter introduces sidebands
about the frequency of the sinusoid spaced at intervals of the flutter
frequency.

Since actual flutter is not sinusoidal but is random in nature
the effect of random flutter is investigated. Gaussian flutter with
a constant spectral density (which closely approximates actual flutter)
is shown to "smear" the power of a sinusoid about the recorded frequency.
The effect of Gaussian flutter on a digital signal is to cause a
Gaussian variation of bit rate and bit-to-bit spacing.

A system is proposed for smoothing the Gaussian bit rate varia-
tions in digital data. The proposed system is shown to attenuate bit
rate variations at the rate of 6 db/octave above a frequency of 2 @
where W is the natural frequency of a buffer control loop. The
number of flip-flops required in the buffer (called the buffer

capacity) for a typical airborne recorder (Parsons AIR-940) is shown



71

to be on the order of 2 or 3 bits for w ~on the order of 2m(10)
rad./sec. However, to accommodate transient changes in recorder
speed, it is recommended that the buffer capacity be made somewhat
larger. A 10 bit buffer would surely be ample to smooth the flutter
on the worst recorder. 1If, in addition, the buffer gain constant, KB’
is made adaptive as shown in Fig. 3.2-3 then the buffer would be
capable of handling most any combination of stationary or non-stationary
(transient) flutter with no overflow or underflow.

It is shown that the only required information concerning the
recorder for a specification of buffer capacity is the cumulative

flutter graph such as the one shown in Fig. 2.6-5.
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APPENDIX A

DERIVATION OF THE PROBABILITY DENSITY FUNCTION
FOR BIT-TO-BIT SPACING

In this appendix the probability density function for bit-to-bit
spacing is derived using the autocorrelation function given in Eq. 2.5-6.

Let

D
]

random variable representing value of h(tb ),
i

and

D
It

random variable representing value of h(tb ),
i+l

where h(tb ) is the time base error shown in Fig. 2.5-1. It has been
i

assumed in the body of this report that 91 and 62 are Gaussian random
variables. The correlation between 91 and 92 is given by Eq. 2.5-6.
Lee21 gives the joint probability density function for two correlated

Gaussian random variables as

2 2
- T
Rh(O) X + x2 2Rh( )xlx

2 [RR0) - R2(m)]

2

p (x,, x,) = e
6162 1 2

(A-1)
2n [RE(O) - Rﬁ('r)] 172

In this case Rh(T) is the autocorrelation of h(t) which is given by
Eg. 2.5-5.

Since 61 and 92 are separated in time by one bit period, 1/RO,
Eq. 2.5-6 gives the particular value of autocorrelation required,
R, (1R D, to be )

- e wZ/Ro

i 1 -
R (1/R) = oje (2.5-6)
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Substituting Eq. 2.5-6 into Eq. A-1 yields

2
2 . 2 , - wlwz/R0
X X, - 2x,x,e
- 2
- 2w_w./R
2
26h [i - e 12 0]
) = & . (A - 2)

Py g (x1’ 2
2

172 ) - 20,0, /80 M2
2ﬂch 1 - e °

Since X, and x, are the values of h(tb ) and h(tb ), respectively,
i i+l

it can be seen from Fig. 2.5-1 that for tB to be X seconds then

+ _ =
(tb. x2) (tb_ + xl) <
1+1 i
or
= XL - + -
x, 1/Ro X, (A - 3)

where the fact that tb - tb = 1/R0 as shown in Fig. 2.5-1 has

i+1 i

been utilized.
Substitution of Eq. A-3 into Eq. A-2 and simplifying gives the

joint probability density that t_ is « seconds and the time base error

B
at t = tb. 1s xl, l.e.,
i
b (X, x.) = X2 4 x (< - 1/R)
tBel ! 1 1 1 [o)
2 2
- 2w.w,/R - w,w,/R
2 2[ 172 o] 2[ 172 o]
- - o _ -
(£ l/Ro) /2 h 1 e oh e
e
e .

9 - 2w1w2/R2 1/2
2ﬁ0h 1 - e °



Completing the square in the exponent involving x

fication gives

p £, x ) =
tBel 1

1
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and further simpli-

2 2 2
(«£ - 1/R0) [xl + xI(x - l/Rb)/Z]

2 2
- w,w,/R - w,w,/R
uOfL - e 12 0] Gi[l + e 12

e

- 20.w /R2 172
2 1270
2noh - e

e

(A - 4)

To determine the unconditional probability density for tB we simply

integrate the joint density given in Eq. A-4 over all values for x

1
between -®© to +®, i.e.,
>
ptB(x) = ptBel(&, xl)dxl,
00
which yields
2
- w,/R
- (4« - 1/R )2/40'2[1 e 172 0]
e ° h (A - 5)
P, («) =
B

Eq. A-5 is the result given in Eq. 2.5-7.

w /R? } 172

- w
/211L 20’121[1 - e 17270
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